Visit Acrosser’s APTA EXPO Micro Site for Success Stories, Online Reservation, and More!

APTA EXPO is arriving in 2 weeks, and acrosser is pleased to announce the official launch of its APTA EXPO micro site! With various interactive features and EXPO-related information, the micro site can greatly benefit both event participants and nonparticipants. The first feature of the micro site that we would like to introduce is the online reservation function. With an estimated 15,000 professionals present at this 3 day event, scheduling a meeting session with Acrosser Sales Team prior to your visit will ensure that you can maximize your time with us. Make a reservation now and visit Acrosser at Booth #1760 to guarantee a smooth business meeting at APTA EXPO 2014!

For those who cannot make it to Houston, we have displayed the products we will be demonstrating at APTA EXPO at the bottom of the micro site, making you an online APTA EXPO visitor instantly. Do not hesitate to leave a sales quote if you find a vehicle PC suitable for your vehicular solutions. To inspire potential customers to consider new business opportunities, Acrosser has also published two client success stories, related press announcements, and videos on the micro site. With so many features on this tiny micro site, Acrosser looks forward to fruitful discussions with customers, and wishes all professionals a wonderful APTA EXPO experience both online and offline.

Acrosser USA Inc.

Bringing creative training for embedded engineering students

Shawn Jordan, Assistant Professor at Arizona State University’s Fulton Schools of Engineering, has combined his industrial computer proficiency and passion for making and teaching into the embedded sbc program, which challenges middle school and high school students to apply the engineering design process to create and build embedded sbc chain reaction machines.

“It teaches engineering skills, systems thinking, and collaboration, and integrates the arts with the STEM fields of science, technology, engineering and math,” Jordan says. Adding arts to the traditional STEM acronym transforms it to network appliance.

STEAM Labs? brings deeper opportunities for creativity not often found in engineering outreach program activities.

“Rube Goldberg Machines engage students on multiple levels to design industrial computer that they want to solve and the solutions for those problems (similar to the maker movement),” Jordan says. “This is different than many of the standard network appliance activities, where students are given a specific problem to solve. This environment creates an opportunity for creativity, imagination, and making dreams of inventions a reality.”

Scholars in engineering and gifted education have developed the embedded sbc program over the past seven years, and it has been deployed to more than 2,500 middle and high school students in the U.S. and Trinidad and Tobago. Students work in face-to-face and virtual teams at camps to build chain-reaction embedded sbc in a project-based, cooperative learning environment with online collaboration tools.

Engineering design will be a requirement in science classes beginning in fall 2015 as part of the Next Generation Science Standards for K-12 education in the U.S. STEAM Labs? is designed to help students better understand engineering career possibilities in addition to learning real-world engineering skills.

“The program challenges industrial computer students to not only ask ‘why?’ but also ‘why not?’ – a question that I think is all too often lost in today’s youth,” Jordan says. “This in turn helps students understand that you can be creative and be successful in engineering – an important message, given pop culture’s less-than-flattering messages about engineering.”

refer to:http://embedded-computing.com/articles/bringing-creative-engineering-students/

Acrosser Will Exhibit its Latest In-Vehicle Computers and Related Accessories at APTA EXPO 2014.

APTA-banner-750x237acrosser USA Inc. is pleased to announce our participation in APTA EXPO 2014 at the George R. Brown Convention Center in Houston, Texas, from October 13–15, 2014. Acrosser cordially welcomes all guests to visit us at Booth #1760, and we look forward to a productive session with everyone. APTA EXPO features massive professionals in the public transportation industry. This iconic show is held once every 3 years, and this year Acrosser will greet the global audience with its rugged in-vehicle computers.

Acrosser’s rugged in-vehicle computers have passed a series of certifications including CE, FCC, and E-mark, providing reliable system stability for multiple vehicle applications. These applications include fleet management, GPS tracking, fatigue detection, stock management, and more. By integrating these applications, in-vehicle PCs can reduce expenses, improve efficiency, and increase profit for vendors and traffic service providers. At APTA EXPO 2014, Acrosser will place particular emphasis on AIV-HM76V0FL, an Intel® Core™ i7-based vehicle PC created for the performance-based market. To learn more about application stories and other products that Acrosser will be exhibiting at APTA EXPO 2014, please visit our EXPO micro site.

In addition to in-vehicle computers, Acrosser will also demonstrate our vehicle accessories and Embedded SBC to satisfy all audiences. So during your visit to APTA EXPO, don’t forget to stop by Booth #4773. With nearly 3 decades of industry experience, Acrosser is truly a trustworthy vehicle PC and industrial computer supplier.

Acrosser USA Inc.

Visit our micro site for APTA EXPO!
http://www.acrosser.com/event/apta/index.html

Contact Us:
http://www.acrosser.com/inquiry.html

Hardware commoditization and the IoT service model


As embedded system hardware margins continue to shrink, system developers must explore new ways of monetizing their products. Earlier this year, economist Jeremy Rifkin released the book “The Zero Marginal Cost Society: The Internet of Things, the Collaborative Commons, and the Eclipse of Capitalism.” In it, Rifkin argues that the Internet of Things (IoT), which he defines as a unison of the Communications, Logistics, and Energy Internets, will converge with the competitive capitalist market to usher in a period of extreme economic productivity in which “the cost of actually producing each additional unit – if fixed costs are not counted – becomes essentially zero, making the product nearly free.” As a result, capitalism as we know it today will be slowly replaced by the distributive economic model of the Collaborative Commons.

While this notion may be objectionable to those of you in the Western world, there’s no denying that the cost of compute and connectivity are in a sustained decline. Moore’s Law continues (at least for now) to eat away at the margins of hardware vendors, and Google Fiber is currently providing free 5 Mbps Internet in Austin, Texas, Kansas City, Missouri, and Provo, Utah, with 1 Gbps speeds available for $70 per month. Trends like these embedded system have led to a lot of business model rethinks in the tech sector, with many companies turning to the cloud for answers.

The cloud space has become a crowded one to say the least over the past couple of years, partially because of the “services” model it offers businesses. Today cloud service models range from Software-as-a-Service to Platform-as-a-Service to Infrastructure-as-a-Service (SaaS, PaaS, and IaaS, respectively), with the newly coined Everything-as-a-Service (XaaS) entering the fold as well. These service platforms deliver everything from industrial computer storage and security to full-blown end-user applications, which can each be neatly packaged as line items on a monthly statement.

So why is the cloud important for embedded developers? Hardware commoditization.

Industrial computer commoditization and the IoT-as-a-Service.

As the dust settles around industrial computer IoT standardization, open, modular embedded system with an emphasis on software development and app enablement will take precedence over custom or application-specific hardware designs (look at the success of “maker” boards like the Raspberry Pi). Does your next system require wireless connectivity? Order a Wi-Fi module from Shanghai. Do you also need analog sensors? Browse the capes on Adafruit’s website. If Rifkin’s predictions hold true, specialized hardware will only be sustainable in a very narrow set of fringe applications, so the majority of system developers will have to find other ways to create value.

Take, for example, a company based out of Naperville, Illinois that produces a line of Wi-Fi sensors for home and building network appliance. ConnectSense sensors range from temperature and humidity to water, motion, light, and dry contacts, but the target market demanded a cost-conscious approach across the product line. Therefore, the company organized the portfolio around a base platform consisting of a repurposed ARM7 SoC that was developed in-house, a TI MSP430 MCU, and a low-cost, low-power Wi-Fi module from partner Shanghai High-Flying Electronics Technology Co., Ltd. This approach allows multiple sensors to be manufactured quickly and easily with only few modifications to the common platform.

What makes an tool architecture like network appliance unique, however, is that it’s also powered by a proprietary cloud platform that handles most of the heavy lifting of software and industrial computer, so additional hardware resources aren’t required on the physical sensors themselves. For novice users, the ConnectSense cloud provides an if/then rules engine that can be used to set up alerts via email, text message, phone call, webhook, or tweet in a plug-and-play fashion, while more advanced developers can take advantage of a full REST API (Figure 1). Today the embedded system is being leveraged in applications such as datacenter monitoring and agricultural observation.

refer to:
http://embedded-computing.com/articles/hardware-commoditization-and-the-iot-service-model/