Business Transformation Through Remote Collaboration, Optimization And Operations

The ability to operate and manage operations in a location-agnostic manner opens the door to a wealth of opportunities. For instance, experts and operations staff can be relocated to population centers, and out of harms’ way. They can then be leveraged over multiple assets in real-time to ensure maximum utilization. Networking collaboration also allows for much faster creation and utilization of best practices across a network of operating assets, thereby contributing to better knowledge retention and management as well as greater efficiency, and establishing a true, shared corporate culture throughout the enterprise.
Real-World Stories

Offshore operations

The Situation: A leading global producer of crude oil and natural gaslooked for a way to stay ahead of dynamic market demands and overcome challenges associated with offshore oil and gas Automation. As part of an innovative technology project and with the help of Honeywell, this company built a Solutions to help coordinate control of multiple offshore platforms in the North Sea, and improve operations and efficiency.

With the new CCR, this company has centralized operations at 18 of its 26 offshore platforms. All operating and production procedures are fully automated and synchronized, creating increased flexibility and competitive advantage. At the heart of CCR is Honeywell’s Experion Process Knowledge Management System (PKS), which enables operators to monitor and control production at various platforms.

In this particular case, the bigger-picture business goal was time to first oil enabled by an out-of-the-box, customized solution. Even bigger than that, though, is that the refiner estimates a 4-to-6 percent production increase with real-time data networking and analysis.

refer to:

http://www.automation.com/business-transformation-through-remote-collaboration-optimization-and-operations

From kindergarten to Kickstarter

Now, Kickstarter projects like Ninja Blocks are shipping Internet of Things (IoT) devices based on the BeagleBone (see this article’s lead-in photo), and startup GEEKROO is developing a Mini-ITX carrier board that will turn the Raspberry Pi into the equivalent of a PC. Outside of the low barrier to market entry presented by these low-cost development platforms, maker boards are being implemented in commercial products because their wide I/O expansion capabilities make them applicable for virtually any application, from robotics and industrial control to automotive and home automationsystems. As organizations keep enhancing these board architectures, and more hardware vendors enter the DIY market, the viability of maker platforms for professional product development will continue to increase.

refer to:

http://embedded-computing.com/articles/diy-pushes-open-hardware-kindergarten-kickstarter/

Leveraging IT Technology for industrial controls applications

It is the author’s opinion that integration of the controls networking  and the IT network is inevitable. It became inevitable the moment the controls industry chose to use Ethernet as the medium with which to communicate data. The controls industry may choose to be dragged kicking and screaming into the modern automation era, or it can gracefully embrace the change. Embracing means the controls industry would be able to leverage the myriad rich, existing technologies that have been proven foolproof in the IT world. To be dragged kicking and screaming into the modern communications era would do a terrible injustice to those who have worked diligently to bring it about. This could quite possibly add an entirely new facet to the fieldbus wars, which I hope have not been forgotten.

With that said, the controls world is going to be moving with an industry that has a definite consumer bias, with product development and release cycles of six months or less. In an industry where the average life expectancy of an automotive production line is eight years, it is impossible to expect the networking  in an industrial setting to keep up with modern IT standards. Therefore, we turn our attention to the technologies that have existed the longest, with the most open standards and the very best support. These are the protocols we wish to use and keep, and this article highlights and explains some of these technologies.

This article does not focus on the technical implementations of each piece of technology. Rather, it is assumed the reader will be using packaged solutions such as a function block for a PLC. These packages typically require only that the user specifies the relevant server to connect to, the data to be gathered and an activation bit. The particulars of each protocol and concept are, ideally, transparent to the user, and therefore it is not pressing that the user understands what is contained in each packet passed between the server and the client. As each protocol described in this article is openly documented and supported, a simple search on the Internet for the technical details will likely yield the relevant automation details.

refer to:
http://www.automation.com/leveraging-it-technology-for-industrial-controls-applications