UAV software development using model-based

An in-the-loop testing strategy is often used as itemized below and summarized in Table 2:

1. Simulation test cases are derived and run on the model using Model-In-the-Loop (MIL) testing.

2. Source code is verified by compiling and executing it on a host computer using Software-In-the-Loop (SIL) testing.

3. Executable object code is verified by cross-compiling and executing it on the embedded processor or an instruction set simulator using Processor-In-the-Loop (PIL) testing.

4. Hardware implementation is verified by synthesizing HDL and executing it on an FPGA using FPGA-In-the-Loop (FIL) testing.

5. The embedded system is verified and validated using the original plant model using Hardware-In-the-Loop (HIL) testing.
A requirements-based test approach with test reuse for models and code is explicitly described in ARP4754A, DO-178C, and DO-331, the model-based design supplement to DO-178C.

Introduction to model-based design

With model-based design, UAV engineers develop and simulate system models comprised of hardware and software using block diagrams and state charts, as shown in Figures 1 and 2. They then automatically generate, deploy, and verify code on their embedded systems. With textual computation languages and block diagram model tools, one can generate code in C, C++, Verilog, and VHDL languages, enabling implementation on MCU, DSP[], FPGA[], and ASIC hardware. This lets system, software, and hardware engineers collaborate using the same tools and environment to develop, implement, and verify systems. Given their auto-nomous nature, UAV systems heavily employ closed-loop controls, making system modeling and closed-loop simulation, as shown in Figures 1 and 2, a natural fit.
Testing actual UAV systems via ground-controlled flight tests is expensive. A better way is to test early in the design process using desktop simulation and lab test benches. With model-based design, verification starts as soon as models are created and simulated for the first time. Tests cases based on high-level requirements formalize simulation testing. A common verification workflow is to reuse the simulation tests throughout model-based design as the model transitions from system model to software model to source code to executable object code using code generators and cross-compilers.

refer to:
http://mil-embedded.com/articles/transitioning-do-178c-arp4754a-uav-using-model-based-design/

Asia claims almost half of Industrial automation sales

A recent report by IHS has shown that in 2012, capital expenditure on industrial automation equipment in Asia reached a total of $76.6bn, representing 46% of global investments in the sector.

Despite this established and rising trend, selling industrial automation equipment in Asia remains a clear business opportunity and one where many European providers are lagging behind.

Despite the first half of 2012 seeing an Asian market slowdown, with only a 3.7% growth in overall revenue from industrial automation equipment, the second half of the year showed definite improvement. The positive trend has continued in 2013, with the industrial automation sector set to grow by 6.2%. In such a dynamic market, getting new business can be both a business and technical challenge.

One of the key areas of opportunity is the power industry, where the booming consumer and industrial power markets in developing economies such as China and India have created rocketing demand. In China the per capita energy use is still a long way behind most of Western Europe, meaning the potential for growth is still huge. Without question, Asia represents a perfect storm of opportunities for European automation suppliers.

In order to help businesses better understand how to take advantage of the current climate and increase their industrial automation sales in Asia, particularly China, the CC-Link Partner Association (CLPA) is hosting a seminar entitled ‘Gateway to China’. The event will take place on 24th September at the Mitsubishi Electric Europe Tokyo Conference Suite in Hatfield.

For more information on the speakers and to book tickets for the event, visit the CLPA’s EventBrite page gateway-to-china.eventbrite.co.uk/.

In light of the sensitive current economic climate, many Asian companies are taking a more careful approach to investment – they are becoming more demanding towards their suppliers and making more enquiries before purchasing. Furthermore, according to IHS’ research, several Chinese manufacturers are currently developing products which are in direct competition with the ones provided by Western suppliers of industrial automation solutions. These are only a few of the obstacles facing European vendors who want to penetrate the Asian market to change the way they do business.

Flexibility and the ability to respond to very specific demands are becoming essential factors when dealing with the Asian market. Being able to offer technologies and products which are compatible with the needs of Asian clients is no longer an option, it’s a must.

– See more at: http://www.connectingindustry.com/automation/asia-claims-almost-half-of-automation-sales.aspx#sthash.4z4uCkA2.dpuf

refer to:http://www.connectingindustry.com/automation/asia-claims-almost-half-of-automation-sales.aspx

Factors That Affect Your Salary – What You Need To Know

Based on the survey results, this job satisfaction is tied to a number of factors. While salary is a leading factor, it is not the only factor. Like previous years, the feeling of accomplishment rated the highest, with solutions challenge, benefits, salary, pleasant work environment, good relationship with work colleagues, and job security also contributing factors. The top four most important benefits are health insurance (63.6%), pension plan/401K (47.7%), flexible working hours (40.5%), and paid time off (33.2%).

Again this year, we asked respondents to tell us if they were currently seeking new job opportunities. Those who are actively seeking new opportunities made up 8.0% of respondents and had an average annual salary of $98,166—about $8,000 less than the average. Passive job seekers made up 36.9% of respondents, whose average salary was slightly less than average at $104,103. Those not seeking new opportunities (55.1%) were making an above average salary of $109,809.

There is a message here for employers. If you are paying less than the industry average, you could very likely lose your engineers. Based on data from automation techies, a recruiting and contract staffing company based in Minnesota, there is a high demand forautomation professionals, and high-quality candidates are hard to find. When companies do find good candidates, the candidates typically have multiple offers on the table. If your company employs high-quality professionals, pay them well, or you may lose them.

refer to:http://www.automation.com/factors-that-affect-your-salary-what-you-need-to-know

Using Automation To Control Assets

Today’s utilities have a highly productive and efficient business environment that is very competitive and needs to comply with many stringent regulatory requirements to prevent situations that would cause a facility to be down for even a short time.

A slight failure of equipment translates into immediate consequences from both a financial and safety perspective. These pressures move utilities toward building high-availability smart sites that help minimize unscheduled down time and allow for shorter time to repair.

A direct result of this trend is the need for the site to have remote access to equipment. To help facilitate this access, utilities are converting networks to become IP-enabled – but with the many benefits that come with this, the move to IP networks also adds a level of complexity as it becomes increasingly important to securely connect these critical industrial infrastructures. To that end, cellular automation enables cost-effective monitoring and control of data at remote sites.

Controlling Data At Remote Sites
For the most part, Networking with critical equipment are located in places that are difficult to access due to long distances or harsh conditions. Accessing critical information, such as equipment health and operational data at these sites can be time-consuming and costly. Also, given today’s aging industrial infrastructures, monitoring and controlling the data within these sites is more critical than ever. In fact, we are beginning to witness the consequences of not updating and maintaining outdated networks, as demonstrated by recent explosions at gas pipelines and blackouts in major cities when parts of the electrical grids have gone down.

refer to:http://pipelineandgasjournal.com/using-cellular-automation-monitor-and-control-assets

 

Color Machine Vision System

Today, printed circuit boards require more color vision solutions because the color of a component helps to identify each part. Plugs and connectors are color coded, and at the same time, the board is tracked using a black-and-white barcode. “These applications used to be done with a high-resolution monochrome camera, but now, you need to be able to sense color to make sure the right component and connector are in the right place,” Kinney explains. “The barcode will usually be located at the edge of the frame. If you use a single-chip color camera, you have to be concerned about color shading and halos at the edge of the image, and it’s made worse if you use cheap optics.”

White LEDs are made one of two ways: by applying a phosphor coating over a blue LED light that produces a broadband light closer to white light, or by mixing different-colored LEDs to make a broadband light source. Both methods result in a spectral continuum that is higher in some narrow wavelength bands within the white light spectrum compared to others. For the most challenging color vision applications, designers need to carefully match these “spikes” to the specific wavelengths. This is where choosing a lighting supplier with in-house engineers can really help, adds Metaphase’s Technical Sales Manager, Mark Kolvites. A quality supplier will make sure that the actual red, green, and blue (or more) LEDs mix to create a white light, or the blue LEDs with phosphor coating provide uniform illumination without hotspots that can cause trouble for automated inspection systems.
As the information above shows, color machine vision solutions can require in-depth knowledge of the physics behind machine vision. The good news is that by choosing the right supplier and partner, designers can solve applications where success isn’t just black and white.

refer to:http://www.visiononline.org/vision-resources-details.cfm/vision-resources/Is-Your-Machine-Vision-System-Color-Blind/content_id/4333

Business Transformation Through Remote Collaboration, Optimization And Operations

The ability to operate and manage operations in a location-agnostic manner opens the door to a wealth of opportunities. For instance, experts and operations staff can be relocated to population centers, and out of harms’ way. They can then be leveraged over multiple assets in real-time to ensure maximum utilization. Networking collaboration also allows for much faster creation and utilization of best practices across a network of operating assets, thereby contributing to better knowledge retention and management as well as greater efficiency, and establishing a true, shared corporate culture throughout the enterprise.
Real-World Stories

Offshore operations

The Situation: A leading global producer of crude oil and natural gaslooked for a way to stay ahead of dynamic market demands and overcome challenges associated with offshore oil and gas Automation. As part of an innovative technology project and with the help of Honeywell, this company built a Solutions to help coordinate control of multiple offshore platforms in the North Sea, and improve operations and efficiency.

With the new CCR, this company has centralized operations at 18 of its 26 offshore platforms. All operating and production procedures are fully automated and synchronized, creating increased flexibility and competitive advantage. At the heart of CCR is Honeywell’s Experion Process Knowledge Management System (PKS), which enables operators to monitor and control production at various platforms.

In this particular case, the bigger-picture business goal was time to first oil enabled by an out-of-the-box, customized solution. Even bigger than that, though, is that the refiner estimates a 4-to-6 percent production increase with real-time data networking and analysis.

refer to:

http://www.automation.com/business-transformation-through-remote-collaboration-optimization-and-operations

From kindergarten to Kickstarter

Now, Kickstarter projects like Ninja Blocks are shipping Internet of Things (IoT) devices based on the BeagleBone (see this article’s lead-in photo), and startup GEEKROO is developing a Mini-ITX carrier board that will turn the Raspberry Pi into the equivalent of a PC. Outside of the low barrier to market entry presented by these low-cost development platforms, maker boards are being implemented in commercial products because their wide I/O expansion capabilities make them applicable for virtually any application, from robotics and industrial control to automotive and home automationsystems. As organizations keep enhancing these board architectures, and more hardware vendors enter the DIY market, the viability of maker platforms for professional product development will continue to increase.

refer to:

http://embedded-computing.com/articles/diy-pushes-open-hardware-kindergarten-kickstarter/

Leveraging IT Technology for industrial controls applications

It is the author’s opinion that integration of the controls networking  and the IT network is inevitable. It became inevitable the moment the controls industry chose to use Ethernet as the medium with which to communicate data. The controls industry may choose to be dragged kicking and screaming into the modern automation era, or it can gracefully embrace the change. Embracing means the controls industry would be able to leverage the myriad rich, existing technologies that have been proven foolproof in the IT world. To be dragged kicking and screaming into the modern communications era would do a terrible injustice to those who have worked diligently to bring it about. This could quite possibly add an entirely new facet to the fieldbus wars, which I hope have not been forgotten.

With that said, the controls world is going to be moving with an industry that has a definite consumer bias, with product development and release cycles of six months or less. In an industry where the average life expectancy of an automotive production line is eight years, it is impossible to expect the networking  in an industrial setting to keep up with modern IT standards. Therefore, we turn our attention to the technologies that have existed the longest, with the most open standards and the very best support. These are the protocols we wish to use and keep, and this article highlights and explains some of these technologies.

This article does not focus on the technical implementations of each piece of technology. Rather, it is assumed the reader will be using packaged solutions such as a function block for a PLC. These packages typically require only that the user specifies the relevant server to connect to, the data to be gathered and an activation bit. The particulars of each protocol and concept are, ideally, transparent to the user, and therefore it is not pressing that the user understands what is contained in each packet passed between the server and the client. As each protocol described in this article is openly documented and supported, a simple search on the Internet for the technical details will likely yield the relevant automation details.

refer to:
http://www.automation.com/leveraging-it-technology-for-industrial-controls-applications

Scalable challenges for embedded pc manufacturers


However, inevitably, the types of processors that will succeed in the future will be the SoCs that provide hardware-accelerated functions. It’s the only way that applications will be able to meet their performance-power budgets. In other words, embedded computer with homogeneous SMP devices, the performance gained by increased core count is not scalable. For example, the more embedded computer cores that share a common bus structure, the more that each core must compete for memory bandwidth. This problem can be alleviated by designing chips that divide cores into clusters, where each cluster can operate autonomously if necessary.

What plans does the EEMBC have to expand its offerings in the future, and how can the industry get involved?

refer to: http://embedded-computing.com/articles/moving-qa-markus-levy-founder-president-eembc/